
Making Memristive Neural Network Accelerators Reliable

Ben Feinberg∗, Shibo Wang†, and Engin Ipek∗†
∗Department of Electrical and Computer Engineering

†Department of Computer Science
University of Rochester

Rochester, NY 14627 USA
∗bfeinber@ece.rochester.edu †{swang, ipek}@cs.rochester.edu

Abstract—Deep neural networks (DNNs) have attracted sub-
stantial interest in recent years due to their superior perfor-
mance on many classification and regression tasks as compared
to other supervised learning models. DNNs often require a
large amount of data movement, resulting in performance
and energy overheads. One promising way to address this
problem is to design an accelerator based on in-situ analog
computing that leverages the fundamental electrical properties
of memristive circuits to perform matrix-vector multiplication.
Recent work on analog neural network accelerators has shown
great potential in improving both the system performance
and the energy efficiency. However, detecting and correcting
the errors that occur during in-memory analog computation
remains largely unexplored. The same electrical properties that
provide the performance and energy improvements make these
systems especially susceptible to errors, which can severely hurt
the accuracy of the neural network accelerators.

This paper examines a new error correction scheme for
analog neural network accelerators based on arithmetic codes.
The proposed scheme encodes the data through multiplication
by an integer, which preserves addition operations through
the distributive property. Error detection and correction are
performed through a modulus operation and a correction table
lookup. This basic scheme is further improved by data-aware
encoding to exploit the state dependence of the errors, and
by knowledge of how critical each portion of the computation
is to overall system accuracy. By leveraging the observation
that a physical row that contains fewer 1s is less susceptible
to an error, the proposed scheme increases the effective error
correction capability with less than 4.5% area and less than
4.7% energy overheads. When applied to a memristive DNN
accelerator performing inference on the MNIST and ILSVRC-
2012 datasets, the proposed technique reduces the respective
misclassification rates by 1.5x and 1.1x.
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I. INTRODUCTION

In recent years, analog in-situ computing has received
significant attention due to its potential to reduce the energy
cost of data movement. At the same time, machine learning
has attracted a great deal of interest with potential appli-
cations to many problems. These two trends have lead to
accelerator proposals that exploit the fundamental electrical
properties of memristive devices to perform matrix vector
multiplication (MVM)—a dominant component of neural
network computation—in the analog domain [1]–[3].

Analog MVM is not a new idea, as various imple-
mentations of analog MVM circuits have been developed
over the past 25 years [4]–[8]. Advances in dense, CMOS
compatible resistive memories now make these architec-
tures even more compelling. While analog neural network
accelerators such as the memristive Boltzmann machine
[1], ISAAC [9], PRIME [10], and PipeLayer [11] exhibit
significant potential to improve the energy efficiency, error
correction for these accelerators remains unaddressed. The
same fundamental electrical properties that allow for the
speedup and energy efficiency improvements also make
these systems much more sensitive to errors. Even if no one
cell is in error such that it would be read improperly
in a traditional memory array, the sum of the errors
when computing a dot product operation that spans
an entire row can produce incorrect results. Moreover,
since in-situ computation relies on reading the result of a dot
product operation performed in the analog domain without
reading the individual data blocks from memory, it is not
immediately clear whether conventional ECC techniques can
correct faults in in-situ memristive accelerators.

Despite the tolerance of neural networks to limited preci-
sion and data errors, we find that the errors in a memristive
network substantially impact the overall system accuracy,
increasing the respective misclassification rates on the well
known MNIST and ILSVRC-2012 datasets [12], [13] from
1% to 3%, and from 43% to 48%. To place the ILSVRC
results in context, a 1% improvement in accuracy was
the difference between GoogleNet [14] and VGG [15],
respectively the winner and the runner up in the ILSVRC-
2014 competition [13]. Likewise, the increase in the MNIST
misclassification rate is comparable to the improvements
achieved by data-skewing to increase the training set size,
doubling the number of hidden units, or using a convo-
lutional neural network (CNN) rather than a multi-layer
perceptron (MLP) [12], [16]. Furthermore, these accuracy
losses increase with multi-bit cells, limiting the scalability
of memristive accelerators to higher numbers of bits per cell.

Memristive hardware accelerators require new error cor-
rection schemes tailored to their unique requirements. Unlike
the traditional error correction techniques used in memory
arrays in which a collection of data elements are corrected
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Figure 1. Memristive crossbar for matrix vector multiplication.

prior to computation, here the correction must be performed
post-computation. This paper presents the first work on error
correction schemes for these accelerators. We propose an er-
ror correction scheme based on AN codes [17]–[19] that can
correct the errors that occur during computation. We then
present a new form of data-aware AN codes that increase the
error correction capability by leveraging the properties of the
resistive networks, and the importance of the error to overall
system accuracy within a DNN computation. As a result, we
can greatly restore the accuracy of the DNN models running
on memristive hardware accelerators, enabling reliable, fast,
and energy-efficient computation for an important class of
machine learning workloads.

II. BACKGROUND

The proposed techniques build upon prior work on mem-
ristive neural network accelerators, failure models of mem-
ristors, and arithmetic codes.

A. Digital Accelerators for Neural Networks

The growing interest in neural networks has made them
a prime candidate for special purpose accelerators in recent
years. DaDianNao [20] proposes an accelerator for convolu-
tional and deep neural networks, utilizing eDRAM to store
large network layers and intermediate values. TABLA [21]
provides a template system and model definition syntax for
the creation of FPGA based neural networks. In addition
to this academic work, Google has deployed their custom
Tensor Processing Unit neural network accelerator in their
datacenters [22].

B. Memristive Accelerators for Neural Networks

Recent developments in memristive devices make it pos-
sible to build nanometer ICs with dense and programmable
resistive networks. This capability has lead to significant
interest in implementing the dot product in the analog
domain, thereby improving the speed and energy efficiency
of prediction with neural networks [1]–[3], [9]–[11].
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Figure 2. Illustrative example of the bit slicing operation.

Memristive dot product accelerators exploit the relation-
ship between a dot product computation and the currents in
a resistive mesh. Figure 1 shows a conceptual example of a
dot product operation using a resistive network. The current
through each resistor Ri is equal to Vi/Ri, and the total
current through a bitline is

∑
Vi/Ri. Hence, it is possible

to implement a dot product u · v between two vectors u
and v by programming the resistors in inverse proportion
to the vector coefficients ui, and setting the voltages Vi in
proportion to the coefficients vi. The dot product is then
given by the current, I , as shown on the bitline in Figure 1.

Regrettably, this simple conceptual model relies on high
precision memristor programming, analog to digital convert-
ers (ADCs) to read each row, and digital to analog converters
to drive each column. To make memristive acceleration
of dot product operations practical, recent proposals have
employed various techniques that compensate for the limited
precision with which these operations can be carried out.
Without loss of generality, we focus on four of these recent
proposals in the rest of this paper: 1) the Memristive Boltz-
mann Machine (MBM) [1], 2) ISAAC [9], 3) PRIME [10],
and 4) PipeLayer [11].

1) Bit Slicing: To address the adverse effect of limited
precision memristor programming and sensing on model
accuracy, all four of the aforementioned accelerators employ
a technique called bit slicing. The key idea is to map a single
logical row of the matrix across multiple physical rows of
an array. An example of bit slicing is shown in Figure 2,
wherein a single logical row with four elements is bit sliced
into four physical rows, one per bit position.

The full sum is computed through a shift-and-add reduc-
tion tree that aligns the sum bits from each row as shown
on the right hand side of Figure 1. The bit slices can be
organized in several different ways: grouping all of the bit
slices for a single row within one array as in MBM [1],
striping bit slices across multiple arrays so that each array
contains a single bit slice for several different rows as in
ISAAC [9], or a combination thereof.

In addition to the bit slicing of the matrix, the incoming



vector is bit sliced and applied to the memory array one
or several bits at a time. A similar reduction operation is
needed to reduce the resultant stream of bits into the full
output.

2) Hierarchical Organization: To handle large matrices
and to reduce the overhead of the peripheral circuitry
through resource sharing, existing MVM accelerators use
a hierarchical design. In MBM, the memory arrays are
organized in a hierarchy of banks, subbanks, and mats. A
large matrix is striped across multiple subbanks, and the
results are aggregated via an intra-bank reduction network.
In ISAAC, the system is organized into in-situ multiply
accumulate (IMA) units, each of which includes multiple
crossbar arrays, their peripheral circuits, and a reduction
network capable of performing the shift and add operations.
Larger reductions are performed within a tile that contains
multiple IMAs, an internal data buffer, and global shift/add
and sigmoid computation units. PRIME places its computa-
tional arrays within a standard memory chip, wherein each
array performs a subset of the computation. In the case of
large weight matrices, PRIME spreads a single matrix over
multiple banks and performs reduction within another array.

C. Fault Models of RRAM

Significant research has been carried out on developing
accurate fault models for RRAM. We focus primarily on
noise sources that are directly relevant to memristive ac-
celerators [23]: thermal noise, shot noise, random telegraph
noise (RTN), and programming errors.

1) Thermal Noise: Thermal noise, also known as
Johnson-Nyquist noise, is a property of all passive de-
vices caused by the thermal agitation of carriers [24],
[25]. Thermal noise can be modeled as a current source
in parallel with a passive resistor. The magnitude of the
current is modeled by a zero mean Gaussian distribution

with a standard deviation of

√
4KBTf

R
, where KB is the

Boltzmann constant, T is temperature in Kelvins, f is the
frequency of the signal, and R is the resistance of the device.
Thermal noise is a fundamental property of resistive circuit
elements, and cannot be mitigated unless the circuit is cooled
or the operating frequency is reduced. Prior work by Soudry
et al. [26] examined the impact of thermal noise on the
analog training of memristive networks, finding that the
noise defines a hard upper bound on the training accuracy.

2) Shot Noise: Shot noise affects the measurement ac-
curacy of the current flowing into a detector. Shot noise
is caused by the fluctuations in the number of electrons
flowing through a cross-sectional area at a fixed point in
time. Although such fluctuations can be averaged out over
a sufficiently long measurement interval, filtering out shot
noise over shorter measurement intervals is a significant
challenge. Shot noise is modeled by a zero mean Gaussian
with a standard deviation of

√
2qIf , where q is the charge

of an electron, I is the current flowing into the device, and
f is the frequency.

3) Random Telegraph Noise: Random telegraph noise
(RTN) exists in both CMOS and memristive circuits, and
constitutes a major cause of the errors in memristive de-
vices [27]–[36]. RTN is caused by the electrons that tem-
porarily become trapped within the device, thereby changing
the effective resistance of the conductive filament. The result
is a temporary and unexpected reduction in the resistance
of a memristor at runtime. The trapping and untrapping of
the electron follows a Poisson process and is unpredictable.
When taking short measurements with a sampling frequency
of a MHz or higher, there is no guarantee of the state that
the device will occupy. Moreover, RTN is strongly state
dependent. The resistance deviation (∆R/R) in the RTN
error state varies from less than 1% to upwards of 40%.

While the exact mechanism of RTN in memristive devices
is still the subject of significant research, we adopt a
physically motivated model proposed by Ielmini et al. [30].
This model considers the resistive deviation as a function
of the cross-sectional area of the resistive filament. In a low
resistance state, the electron impacts only a small proportion
of the conductive region, which results in a relatively small
resistance deviation. However, as the resistance increases
and the filament narrows, the electron impacts a greater pro-
portion of the filament, until eventually the resistance devia-
tion saturates as the electron impacts the entire filament. This
model is consistent with results from measured devices of
multiple material stacks, and with simulations [27], [28]. The
Ielmini model determines the resistance deviation ∆R/R as
a function of seven material parameters: 1) εr, the relative
permittivity of the dielectric; 2) Nd, the concentration of
dopant atoms; 3) ρ0, the resistivity of the metallic nanowire;
4) th, the thickness of the dielectric; 5) α, the relative
resistivity increase caused by the trapped electron; 6) T the
temperature in Kelvins; and 7) the current resistance of the
device. The RTN error probability is determined based on
the time constants of switching, τON and τOFF [28]. These
time constants are based on the energy required for the state
transition and are asymmetric, leading to different dwell
times in each state. While the time constants are dependent
on the material stack of the device, experimental results
from multiple device stacks including TaO and HfO show
asymmetric dwell times, with τOFF several times larger than
τON [27]–[29].

4) Programming Errors: Even in the absence of the
aforementioned sources of noise in memristive circuits,
process variations limit the precision with which a mem-
ristor can be programmed. Alibart et al. propose a simple,
widely used scheme for accurate memristor programming;
the key idea is to successively apply a series of short
pulses to converge slowly on the target resistance [37].
This iterative programming technique may suffer from a
long write latency; however, the memristive accelerators
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Figure 3. Arithmetic vs. Hamming distance.

discussed in this work are used for inference only, and
do not require online updates. As a result, the relatively
long programming times can be amortized over the entire
lifetime of the learned neural network model. The short
pulse programming technique has been shown to program
resistance to within 1% of the target value; consequently,
we permit a 1% deviation in the programmed resistances in
the simulation experiments.

Programming errors are a major issue for the use of
RRAM in both storage and in-situ computation, and several
approaches to mitigate the problem have been explored.
Niu et al. [38] study how the tradeoff between program-
ming accuracy and duration—and by extension, energy and
bandwidth—can be optimized by leveraging the traditional
error correcting codes used in DRAM. They propose reduc-
ing the programming time of an array to reduce the write
energy, and providing ECC support to correct the resultant
errors. Xu et al. [39] examine programming optimizations
for multi-level cells, including non-linear mapping of resis-
tances, and two different programming schemes optimized
for speed and long term data retention.

5) Manufacturing Defects: Device yield is a well known
problem in CMOS design with a wide variety of architec-
tural, circuit, and device level solutions. In DRAM, row and
column sparing is used to increase the yield, wherein the
rows or columns containing faulty cells are laser cut and
replaced by a spare row or column. While this technique is
effective, it incurs significant overheads even at error rates
of less than a tenth of a percent [40]. The problem is ex-
acerbated by the relative immaturity of RRAM technology,
where two recent simulation studies have placed the cell
error rates at greater than 1% [41], [42].

6) Endurance Failures: Memristor endurance varies
widely based on the material properties and write mech-
anisms. An endurance range of 106 to 1012 writes has
been reported [43], [44], after which the cell does not
switch reliably and becomes stuck in one state. Managing
device endurance has been widely explored in the context of
PCM [45]–[48]. Existing memristive accelerators focus pri-
marily on matrices that are written once during the problem
setup, and then rewritten either for new problems or during
network updates. Bojnordi et al. [1] compute a worst case
system lifetime of 1.5 years for the Memristive Boltzmann
Machine; for deep learning, however, this analysis does not
consider the variability in device endurance. Even with a 1.5
year system lifetime, faults must be handled gracefully. Prior

work by Xia et al. [49] proposed a scheme to map the weight
matrices stored in memristive crossbars for computation
around faults or endurance failures through a combination
of neural network pruning and data remapping. This scheme
increases the the life of the neural network accelerator,
allowing it to be used for training; however, it does not
address the transient faults caused by the analog summation
of the error currents.

D. Arithmetic Codes

Arithmetic codes are a class of ECCs that conserve the
result of a set of arithmetic operations when the operands
are subject to noise. Formally, f() is an arithmetic code over
the operation ◦ if f(x) ◦ f(y) = f(x ◦ y) [50]. Arithmetic
codes have been applied in a variety of contexts to increase
the reliability of systems built from unreliable hardware
components [17], [18], [51]–[53].

An important difference between arithmetic and non-
arithmetic codes is the type of error against which each
code is designed to protect. In non-arithmetic codes, the
errors are expected to be the flips of individual bits during
data transmission or storage. In contrast, the expected errors
in arithmetic codes manifest as an additive syndrome. The
difference between these two error models can be seen by
examining an example addition operation whose sum must
equal 7 (Figure 3). An additive error of 1 can change the
output of the computation from 0111 in binary represen-
tation to 1000. This change has a Hamming distance of
four and resides outside the correction capability of the
commonly used SECDED ECC [19], although from an
arithmetic perspective, only a single error has occurred. Just
as SECDEC ECC can protect against errors that occur due
to a wide variety of physical phenomena that cause a bit flip,
the arithmetic codes can protect against additive syndromes
regardless of the source of the error.

We focus on a specific class of arithmetic codes called
the AN-codes [52], [54], [55]. AN-codes are non-separable
arithmetic codes that encode data through multiplication by
an integer called A. These codes conserve addition opera-
tions through the distributive property, using the definition
above: Ax+ Ay = A(x+ y). Error detection in AN codes is
performed through a simple modulus operation: if N is the
output of a computation, the residue N%A must equal zero
for a correct computation.

As the simplest case, consider an AN code where A = 3.
This code carries an overhead of one bit, and can detect all
additive syndromes of ±1 or ±2 at any bit position. This
A = 3 code is comparable to single bit parity codes in non-
arithmetic ECC, in that it is guaranteed to detect a single
error. An A = 3 code cannot, however, correct errors because
all residues of N are 0, 1, or 2, offering no information about
the bit position of the additive error. To correct the errors, a
code must have a sufficient number of unique residues for
all possible syndromes, and the modulus of all syndromes
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Figure 4. Example of error correction with AN codes using an A=19 code.

under A (syndromes%A) must be unique. This implies that:

A ≥ Number of Syndromes (1)

for an AN correcting code. Notably, this is a necessary, but
not sufficient condition for identifying the permissible values
of A.

Figure 4 provides an example of how AN codes can
be used to correct the data after computation. An error at
a single bit position can be viewed as the addition of a
syndrome ±2i. As mentioned above, each syndrome must
map to a unique residual that can be stored in the correction
table on the right. Once the residual is computed and used to
index into the correction table, the table entry is subtracted
from the result to restore the value. Note that the error in
this example affects the values of multiple bit positions, even
though the error itself is only a single bit.

The A = 19 code in Figure 4 is comparable to a SECDED
Hamming code for 5-bit values. After the input data is
multiplied by A, the resulting value is 9 bits wide, requiring
18 syndromes to correct all ±2i errors at each of the 9
bit positions. The mapping of the residuals to syndromes is
stored in a correction table, shown on the right hand side
of Figure 4. Since A = 19 has 19 possible residuals that
indicate an error, an A = 19 code is the minimum code that
can correct any single error. Similarly, for 32 bit values, an
A = 79 code is used. A = 79 adds 7 bits for correction,
resulting in 39 possible bit positions in error and 78 unique
residuals; thus, A = 79 is the minimum A that can correct
all single bit errors. A proof of this property for single error
correcting AN codes can be found in [19].

Unlike a SECDED Hamming code, the A=79 AN code has
no detection capability. Since all of the possible residues are
used for correction, there is no excess capacity to indicate
an uncorrectable error.

III. CAN MEMRISTIVE DOT-PRODUCT ACCELERATORS
BE PROTECTED WITH SECDED ECC?

One central question when attempting to design error
correction schemes for memristive accelerators is whether
traditional SECDED ECC can be relied on to proctect
the result of the computation. Unlike the arithmetic codes
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described in Section II-D, SECDED ECC does not conserve
addition, and attempting to add two values encoded with
SECDED ECC in-situ within a memristive crossbar is not
guaranteed to be correct even in the error free case. This is
shown in Figure 5 where we attempt to add two 4 bit values
encoded with the (8,4) Hamming Code, without errors. On
the left side of the figure, the addition operation is performed
on the unencoded operands; the sum, 8, is then encoded
with the (8,4) Hamming Code, f(x + y). On the right
hand side, we show the addition of the two encoded 8 bit
values, f(x) + f(y), using the previous notation. As shown,
these two sums are not equal—in fact, they are separated
by a Hamming distance of two so that no correction is
possible with SECDED ECC. Since the computation is not
guaranteed to work in the error-free case, there is also no
guarantee that it would work in the presence of errors.

IV. ERROR DISTRIBUTIONS IN MEMRISTIVE
ACCELERATORS

To examine the impact of errors on matrix-vector multipli-
cation, we build a SPICE model of a single 128 entry row,
and perform a transient analysis to study how the output
current varies over 1 second of operation. The simulated
circuit is shown in Figure 6. We adopt the model proposed
by Hu et al. [23] with one important modification to the
random telegraph noise. Hu et al. use a fixed ∆R/R of 10%
across the entire resistance range and assume that the cells
spend equal time in the RTN high and low states. These two
assumptions lead to the error canceling effects that they note
in large arrays. We use instead the Iemini model discussed in
Section II-C3, where ∆R/R varies based on the memristor
state and has an uneven state distribution that removes the
error-canceling effects. This state dependent ∆R and the
uneven state probabilities represent a better model of the
RTN in a large number of memristive material stacks [27]–
[36].

Since the detrimental effects of noise on the circuit
increase with the row length, we model a single row driven
by ideal voltage sources rather than a small crosspoint array.
This model does not consider the reduced voltage seen by the
rows that are farther from the drivers; however, the mapping
function of Hu et al. [23] compensates for these effects. For
simplicity, we model each memtistor as a resistor since we
consider only the read process of each memristive device.
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Figure 7. Current transient of a 128 element row with two bits per cell.

The current transient for a 128 element row, with two
bits per cell and an equal number of elements in each
state, is shown in Figure 7. The dotted orange line is the
ideal error free current of the row with the black bars
showing the ±1 and ±2 error thresholds. Since RTN errors
do not have a zero-mean, we apply an RTN offset to the
programmed resistance based on the ∆R/R of the target
resistance and the probability of being in an RTN error state.
This moves the overall average current seen closer to the
error free current target, similar to the calibration scheme of
Hu et al. [23] but without the series of calibration vectors.
The overall error rate in this distribution is 14.5% (13.9%
high errors, and 0.51% low errors). In practice, the error
rate experienced may be different due to the dependence
on both the input vector pattern and the row states. In
particular, the case of all ones for the vector creates the
worst case error probability since each cell contributes to the
error distribution. This error dependence on the row state is
discussed in the next section.

V. AN CODES FOR IN-SITU MATRIX VECTOR
MULTIPLICATION

Since AN codes operate on full integer operands, they can
be applied directly to an in-situ MVM operation by multi-
plying the matrix by the selected A value. The multiplication
is performed before the data is bit sliced and written to the
accelerator.

As discussed in Section II-D, AN codes are designed to
correct errors that occur at a particular bit position. This is
analogous to an error that occurs within a physical row such
that the integer output of the ADC servicing that physical
row differs from the actual quantized output. After the value
has been reduced via a shift and add tree (Section 2.1.1), the
final logical row output is corrected by the AN codes.

A. Naı̈ve Use of AN Codes

We first consider AN codes that have been previously
examined in other applications. The A = 19 code is shown
in Figure 4, which corrects all single bit errors for 5-
bit operands. For a 32-bit operand, an A = 79 AN adds
7 check bits for a final 39 bit encoded data value. This
code can correct errors of S = {±2i; 0 ≤ i ≤ 39};
hence, it can correct an erroneous quantized output of one
logical row if that error is affects at most a single bit. For
greater error correction capability, we can consider burst
error correction codes where the syndromes can be 2 bits.
The burst error correction code for 2 bits can correct all
errors of S = {±2i}∪{±(2i + 2i+1)}, up to a quantization
error of 3 in one physical row per logical row. These larger
AN codes, however, are generally not as efficient as the A
= 79 and similar AN codes. While the A = 79 code uses
every single residual in A, an AN code that can correct up
to a 2 bit quantization error wastes approximately 15% of
the residuals. As discussed by Mandelbaum [56], AN codes
that can correct multiple, uncorrelated errors require A values
that are impractically large.

Experiments with different A values reveal three limita-
tions of the AN codes. First, larger codes can actually reduce
reliability. Since each physical row is a potential source of
error, there is a tradeoff between the correction capability
and the increased error susceptibility of a logical row. This
tradeoff exacerbates the decrease in residue efficiency as
the number of syndromes increases, and creates an upper
bound on the correction capability of the system. Second,
as mentioned in Section II-D, the AN codes described here
do not provide detection capability. If the code encounters a
syndrome, it blindly attempts to correct the error, and in the
process, may make the error even worse. Consider an A =
79 code where the value 1024 is encoded, which results in
an encoded value of 80896. Assume that the encoded value
suffers a single digit quantization error in the least and the
fourth least significant bits for a syndrome of the digit 9. The
decoded value will be -12249, which differs from the correct
value by more than the uncorrected value. Third, even when
using a distance 3 code such as A = 79 for 32 bit integers,
the bit overhead of the code is larger than that of SECDED
Hamming codes. An A = 79 code requires 7 bits of ECC
to correct a single bit error, a 22% overhead, compared to
the to the 12.5% overhead of a 64,72 Hamming code. Using
the table of distance 3 codes in [57], we see that a distance
3 code for 64 bit operands would require 8 bits, while a
16 bit operand would require 6 check bits, for overheads of
12.5% and 37.5%, respectively. To remedy these problems,
we propose data-aware ABN Codes.

B. Data-Aware ABN Codes

The AN codes discussed above implicitly assume that
all of the physical rows within a logical row are equally
susceptible to error, and equally important to the system



level accuracy of a DNN. This assumption is incorrect
for the memristor error model discussed in Section II-C.
In particular, RTN errors, which are the dominant source
of error in memristive accelerators [23], have a strong
state dependence. Moreover, since each row represents a
single bit position, the data residing at the most significant
physical row are much more important to the accuracy of the
computation. By considering the properties of the underlying
data, we can increase the effective correction capability of
the system without an undue storage overhead.

1) Allocating Syndromes to Minimize the Error Prob-
ability: As discussed in Section II-D, an AN correction
scheme can be defined in terms of an A value and a
correction table that maps the residuals to syndromes. For
each physical row, we compute the probability of that row
being in error due to RTN effects, and select the worst
case physical row from the array. These probabilities are
then sorted and combined to form 2, 3, and 4 physical row
combinations until the probability of a combination falls
outside of the total number of available syndromes. Finally,
each combination is weighted by the bit position of the most
significant bit in the combination to form a final error score.
This process, going from a matrix to the error list, is shown
in Figure 8.

To generate the syndrome table, we iterate over the sorted
list of possible error scores and compute the residual mod
A of each syndrome. If the residual is unique, it is added
to the syndrome table and the process continues until the
list is exhausted or the syndrome table is full. The resulting
table can correct both single and multi-bit errors based on
the computed probability.

This approach naturally extends to yield or endurance
failures. A cell stuck at the incorrect state has an error prob-
ability of 1 when that cell is active. This means that when
forming the syndrome table, each RTN error is combined
with the error caused by the stuck-at fault. However, errors
that occur when the stuck cell is not being multiplied by the
input vector may remain uncorrected. We therefore split the
table into two halves, one that considers the stuck-at faults,
and one that does not. This degrades the overall correction
capability of the table; however, it also allows the array to
operate in the presence of stuck-at faults.

2) Constant Overhead, Multi-Operand Correction: Due
to the correction condition in Equation 1, the number of
check bits required relative to the operand size falls as the
operand size increases. To simplify the hardware, we would
instead like constant overhead regardless of the underlying
number of bits. Additionally, we would like large operand
sizes to reduce the storage overhead of the code. To satisfy
these requirements, we propose multiple-operand correction.

A coded operand AN ′ is defined by first concatenating
the underlying operands, and then multiplying them by the

1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 1

1 0 1 0
1 0 0 1
1 1 0 0
0 0 1 0

3 0 1 0
1 0 2 1
1 1 0 2
2 0 3 2
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Matrix 

(20)

Error List

21 * Perror(3)

20  * Perror(2)

21 * Perror(3) 
    * Perror(2)

Figure 8. The error list for a 2 bit 4x4 matrix.

selected A value. Mathematically, this can be represented as

AN ′ = A×
op∑
i=0

(2i×b ∗Ni) (2)

where op is the number of operands in a coded operand,
and b is the number of bits per individual operand. The
multiplication by 2i×b is equivalent to shifting the operands
so that they do not overlap.

It may appear as though the process of multiplying the
multiple operand block by A could create errors due to
operands that cause carries; however, this is not an issue so
long as the correction and decoding is done on the full coded
block and split into the underlying sums after the block
has been decoded. For the purposes of syndrome allocation,
we consider all of the physical rows within a coded group
as making up one logical row; however, the bit weight is
computed based on the bit position within the individual
operands.

3) Detection Capability: In Section II-D, we noted that
an A=3 code is comparable to a simple parity bit scheme
since it can detect single bit position errors via a single
check bit. Just as single error correcting Hamming codes
can be augmented with an additional bit to form SECDED
ECC, we can augment the AN codes with an additional B
value to form ABN codes—a new family of codes similar to
the bi and multiresidue codes proposed by Rao [54], [55].
In ABN codes, B is a small prime number that is multiplied
by A to form the multiplier for the code. At decode time,
the A value is first used to correct an error as discussed
above. After the correction, the detection is performed on
the corrected value using B.

4) Selecting A: As discussed in Section II-D, there is
no known way to find A for a set of syndromes without
searching over all candidate As. Furthermore, the underlying
bit counts in each physical row themselves rely on A,
creating a circular dependence. Since existing schemes for
memristive accelerators perform a moderate to substantial
amount of matrix preprocessing to set up the data arrays
and require a large number of memristors to be written with
high accuracy [1], [9], [23], we search over the space of
As to determine which one minimizes the error probability



using the RTN error threshold. We define the set of candidate
As to be all odd numbers that can be represented by the
number of check bits available. The maximum candidate A
is divided by B so that the number of check bits required is
not exceeded. We select the A that results in the table with
the greatest error correction capability.

5) Predicting Row Error Rate: To predict the row error
rate, we consider a simple model of a physical row as a
series of parallel resistors. This simple model assumes that
the input vector comprises all 1s, which represents the worst
case error susceptibility for a row. Using this model, we
compute the error free current for a physical row state,
defined by the number of resistors in each state. Due to
the non-zero conductance of the devices in the RHI state,
the error free current will not be perfectly centered on the
ideal current. Additionally, due to the RTN offset discussed
in Section IV, the error free current will drop further below
the ideal current. By comparing the error free current to the
current boundaries for correct quantization, we determine the
number of cells that must be in error to exceed the upper
current boundary, and the number of cells not in error for the
current to fall below the lower boundary. Given these counts,
we can compute the error probability using a binomial CDF
B(n, k), where n is the total number of cells in the 1 state
and k is the error threshold computed above.

Alternatively, the aforementioned process can be replaced
by testing and characterization of rows in fabricated systems.
Characterization may also allow the row error rate prediction
to account for local device variation, increasing the predic-
tion accuracy by capturing effects that are not included in
the idealized model. The important point is the mapping
of the row state to the error probabilities for data aware
computation, rather than the exact method of determining
the error rates.

VI. IMPLEMENTATION OF AN CODES

One important goal of the proposed error correction
scheme is transparent compatibility with existing memristive
accelerators. As discussed in Section II-B2, prior work on
in-situ MVM for neural networks splits the computation into
blocks made up of multiple arrays, called submats by MBM,
and IMAs by ISAAC. (For simplicity, we adopt the ISAAC
terminology.) Each IMA contains an error correction unit
(ECU) that consists of all of the hardware to implement the
proposed AN code.

The error correction unit comprises three major compo-
nents: two divide/residual units for the residual computation
of A and B (one each), and a correction table that maps each
residual to a syndrome. The output of the first divide/residual
unit computes the integer division of the input by A, and
outputs the residual along with the quotient. The residual is
used to index into the correction table, and the value read
from the correction table is added to the result. This value
is then fed into the second divide/residual unit where it is
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Figure 9. Error correction within an ISAAC IMA.

divided by B. The output of this unit is the final output of
the error correction system, and includes a flag indicating
if the computation was in error. The basic error correction
unit is shown in Figure 9.

To reduce the overhead of the ECU, we employ three
optimizations. First, we note that most of the benefit from
the proposed data-aware ABN codes comes from the tables
rather than the value of A. In fact, during the A search
process, more than half of the IMAs select one of three
A values. Instead of implementing a full divider (or a
multipliplier for multiplication by division [58]), the division
by A unit has a set of five constant A values that are used as
the candidate As (rather than all odd numbers as discussed in
Section V-B4). Similarly, B values beyond 3 do not increase
the error detection capability of the code until they become
so large that they instead start significantly decreasing the
correction capability. For this reason, the second divider
purely divides by three, forming the equivalent of the parity
bit used for SECDED ECC.

Second, if syndromes must be as long as the coded word,
the correction table can become quite large. To remedy the
problem, we exploit the sparsity of the syndromes, each of
which contains at most four bits in error. These bit positions
can be encoded as four indicies and expanded into the integer
syndrome representation before being added for correction.
Since each correction table is only accessed once per n
cycles, where n is the number of operands per multiple
operand group, this allows the table to be shared between n
different IMAs with staggered accesses.

A. Handling Uncorrectable Errors
When the error correction unit outputs an uncorrectable

error flag, several different steps can be taken to handle the
error within the system. As discussed in Section V-A, in an
uncorrectable error case, the corrected value can actually be
further from the correct value than the uncorrected value.
This is handled by storing a post-division-by-B syndrome in
the correction table that can be added back to the result in
the case of an uncorrectable error. This solution preserves
the throughput of the system in the presence of uncorrectable
errors at the possible cost of accuracy.

Another possibility is to retry the computation on an un-
correctable error. This requires modifications to the datapath



Table I
DEVICE PARAMETERS

Parameter Value
RLO 2kΩ
RHI 5MΩ
Bits per Cell 2− 5
VLO 0V
VHI 0.3V
Temperature 350K
Film Thickness (tNiO) 20nm
Film Resistivity (ρ0) 100µΩcm
RTN Defect Resistivity Multiplier(α) 2
Permittivity of Film (εr) 12ε0
Failure Rate 0.1%

and comes at the cost of throughput. Retries must stall the
ongoing array computation, which can disrupt the pipelining
and bus scheduling. Retries also incur a substantial energy
overhead since the full array must be active even if only a
small number of logical rows are uncorrectable.

VII. EXPERIMENTAL SETUP
We evaluate accuracy using a custom simulator that per-

forms Monte-Carlo simulation of in-situ MVM with errors.

A. Architecture
We evaluate a memristive accelerator similar to ISAAC

[9], wherein each layer of the neural network is placed in one
or more tiles. We use multibit memristors with 1 to 5 bits per
cell, and 128x128 arrays to achieve a good balance between
throughput and baseline reliability; 16 bit fixed point weights
with coded operands of 128 bits; and 7 to 10 check bits. For
weight matrices with more than 128 columns, we split the
matrix evenly into chunks no larger than 128 columns. The
data-aware AN codes consider each array separately for the
purposes of selecting A and building the correction table.

B. Device Modeling
The simulator incorporates the error model described in

Section II-C; the key parameters of the model are listed in
Table I. The values of RLO, RHI , and VHI were selected
to be similar to Hu et al. [23] with an extended dynamic
range to increase the noise margin, and by extension reduce
the error susceptibility, for the baseline system. For RTN
modeling, we use the parameters reported by Ielmini et
al. [30] for a NiO memristor. Based on these parameters,
we derive ∆R/R for RLO and RHI as 2.8% and 50%,
respectively. Within the simulator, ∆R/R is calculated di-
rectly as a function of the resistance rather than using the
derived ∆R/R. To model the effect of fabrication defects
and cell endurance failures, we include a failure rate term
representing the probability that a cell will exhibit a stuck-at
fault and thus cannot be programmed.

C. Circuit Modeling

We implement the error correction units in Verilog RTL
and synthesize the units with the Synopsys Design Com-
piler [59] using FreePDK45 [60]. The results are scaled to
32nm in order to compare the hardware overhead directly
to that reported by ISAAC, following the methodology
published in earlier work by Stan et al. [61]. The error

Table II
EVALUATED NEURAL NETWORKS.

Name Network Topology Source
MLP1 3 layer MLP

500 and 150 hidden units
[12]

MLP2 2 layer MLP
800 hidden units

[16]

CNN1 5 Layer CNN
6 5x5 feature maps
16 5x5 feature maps
120 and 84 node fully connected layers

[12]

AlexNet 8 Layer CNN
5 convolutional layers
3 fully connected layers

[64]

correction table is evaluated using CACTI 6.5 [62] at 32nm.
For all other structures that are common with ISAAC, we
use the parameters presented in the ISAAC paper.

D. Workloads

Using the TensorFlow framework [63], we train three
neural networks, one CNN and two MLPs, on the MNIST
data set [12]. We then extract the weight matrices for use
in the developed simulator. The parameters of the neural
networks are listed in Table II. The neural networks are
trained on 50,000 data points from the MNIST training set,
with 10,000 points used for validation. We use the MNIST
dataset directly and do not apply distortions. The neural
networks are trained using single precision floating point
values and then converted to 16 bit fixed point integers
for mapping. We use the negative value normalization and
encoding from ISAAC [9] for the weights. We evaluate
the accuracy of the neural networks using the developed
simulator on 1000 randomly selected examples from the
MNIST test set. Additionally, we evaluate the well known
AlexNet CNN [64] using the pre-trained weights from the
Caffe codebase [65]. Due to the performance limitations of
our Monte-Carlo simulation, we evaluate AlexNet at a single
2 bit cell, 9 ECC bit design point rather than on the full
spectrum of cell and ECC parameters.

VIII. EVALUATION

This section presents the the accuracy, energy, and area
characteristics of the proposed ECC scheme.

A. Accuracy Evaluation

Figure 10 show the misclassification rate of an uncor-
rected memristive accelerator and a data-aware AN coded
scheme using 7 to 10 bits of error correction as compared
to the respective software implementation for MLP1, MLP2,
and CNN1 over a range of bits per cell. We evaluate 7
schemes with different levels of overhead. The Static16,
and Static128 codes are the naı̈ve AN codes described
in Section V-A for 16 and 128 bit (grouped) operands
augmented with a B=3 check term. These codes are designed
to correct an error at exactly one bit position; if the code
detects an error post-correction using the B value, it reverts
to the detected value. Data-aware ABN error correction
schemes are specified as ABN-X, where X is the total
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Figure 10. Misclassification rate of MLP1, MLP2, and CNN1 for different bit widths.

number of ECC bits. A is selected from a set of 5 candidates,
and the contents of the correction table are determined for
each array. B is 3 for all dynamic codes and reverts to the
uncorrected value on a detected error.

These results show the limitations of the naı̈ve application
of AN codes. At lower numbers of bits per cell, the static
AN codes achieve results that are competitive with dynamic
codes. As the number of bits increases, the outputs begin to
have multiple bit positions in error, and accuracy converges
to that of the uncorrected baseline. Even at these lower bit
levels, the Static16 code uses 48 check bits (6b per operand)
as opposed to the 7 to 10 of the dynamic schemes. Attempt-
ing to avert the problem through multiple operand codes
without applying the proposed data-aware scheme, shown as
Static128, significantly increases the misclassification rate.

The errors increase the misclassification rates from 1-2%
in the pure software case to 3-4% for the MLPs, and 2-3%
for the CNN. It is important to place the accuracy differences
seen here in context: while a 1% reduction in the MNIST
misclassification rate for a MLP may appear small, this is
an improvement comparable to that achieved by data-
skewing to increase the training set size, doubling the
number of hidden units, or using a CNN rather than
an MLP [12], [16]. Given the high accuracy of MNIST
where a single layer linear classifier can achieve less than
8% misclassification rate [12] and current state of the
art neural networks achieve misclassification rates less
than 0.5%, misclassification rate improvements of 1%
are considered highly significant [66].

The results demonstrate the two possible uses for the pro-
posed error correction scheme. First, the proposed scheme
can be applied to reduce the raw error rate while holding
the number of bits per cell constant. The data-aware AN
schemes can fully eliminate the misclassifications due to
array noise for 1-bit cells, and generally eliminate up to
one half of the misclassifications caused by the array noise.
The other possibility is to use the error correction scheme to
bound the number of errors while aggressively increasing the
number of bits per cell. For instance, in MLP1, a data-aware
9-bit code using 4-bit cells can provide accuracy comparable
to an uncorrected array using 2-bit cells. This technique can

Table III
ALEXNET ACCURACY.

Software Uncorrected ABN-9
Top 1 Misclassification 42.96% 48.3% 43.9%
Top 5 Misclassification 19.74% 21.3% 20.1%

be used to reduce the overall energy consumption and area
of the system, as an eight operand group of 16 bit operands
requires 35 bit slices at 4-bits per cell, compared to 64 bits
for eight unprotected operands using 2-bits per cell.

MLP2 shows reduced error resilience as compared to
MLP1 despite the greater number of hidden units, and higher
baseline accuracy. This reduction is due to the single hidden
layer of MLP2 as compared to the multiple hidden layers
of MLP1. The second hidden layer of MLP1 allows it to
perform classification using features that are several steps
removed from the incoming data, and are somewhat skew-
invariant. An even more pronounced version of this effect
can be seen in CNN1 where the misclassification increase
caused by the array noise from errors is less than 1%. This
is in part caused by the lower number of active elements in
each row of the convolutional layers, as well as the features
that are less directly tied to the input values.

1) Accuracy Evaluation with Cell Faults: Figure 11 show
the same networks analyzed with the addition of stuck-at
faults. We again see the limitations of the AN codes without
data-aware mapping: even the Static16 code exhibits worse
results than the data-aware variants across the bit range,
despite the significantly higher overhead. Conceptually, each
code has a certain error tolerance before its ability to
correct falls off dramatically, and the misclassification rate
converges toward the uncorrected baseline. The addition of
cell faults reduces the tolerance threshold, and can be seen in
the MLP1 results. In the simulation without stuck-at faults,
MLP1 shows correction capability that generally scales with
the number of correction bits as the number of bits per cell is
increased. However, when moving from 4- to 5-bit cells with
stuck-at faults, the ABN-8, ABN-9, and ABN-10 results all
start to approach the uncorrected baseline.

2) AlexNet Evaluation: To demonstrate the scalability of
the proposed scheme to larger networks, we evaluate the
well known AlexNet eight layer CNN. The accuracy results
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Figure 11. Misclassification rate of MLP1, MLP2, and CNN1 with cell faults for different bit widths.

Table IV
POWER AND AREA OF THE 9 BIT ERROR CORRECTION HARDWARE.

Component Area Power

Error Correction Unit (ECU) 0.0031 mm2 1.42mW
Error Correction Table 0.0012 mm2 0.51 mW

are summarized in Table III. The results show that errors are
an even larger problem on more challenging neural network
applications than on the small MNIST examples evaluated
above, with over a 5% increase in misclassification rate for
top 1 classifications. To place these results in context, a 1%
improvement in top 5 misclassification was the difference
between GoogleNet [14] and VGG [15], respectively
the winner and the runner up in the ILSVRC-2014
competition [13]. Further, the results demonstrate that the
proposed data-aware ABN codes can be applied to networks
with 60 million parameters, compared to the approximately
600K in the MNIST networks, and still provide significant
accuracy improvements.

B. Area, Power, and Latency Overheads

This section evaluates the overhead of the proposed error
correction scheme. Table IV shows the overhead of the
proposed ECU. We compute full power and area overheads
considering not only the ECU, but also the additional rows
and the peripheral circuitry required by the check bits.

1) Area: The ECU alone requires a 3.4% overhead on
top of an ISAAC tile designed to handle 16 bit operands
with 2 bits per cell. The additional 9 bits per 128 adds an
additional 7% overhead to the ADCs, DACs, and memristor
arrays. Taken together, the error correction scheme requires
a 6.3% area overhead per tile. This overhead corresponds to
a 5.3% increase in the overall area of the memristive IC.

2) Power: The ECU requires a 2.1% power overhead on
top of a tile. Handling the additional bits bring the total
chip-wide power increase for the accelerator to 5.8%.

3) Throughput: Since the ECU is fully pipelined, it can
be integrated directly into previously proposed accelerators
without reducing the system throughput. ISAAC, for in-
stance, asserts that there are no structural hazards and that
the throughput is fully deterministic.
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Figure 12. Misclassification rate of MLP1 with different RLO ∆R/R
and RTN error probability.

C. Sensitivity to RTN Parameters
We conduct sensitivity studies on the RLO ∆R/R (RHI

∆R/R is fixed at 50%), and the probability of a cell being
in the RTN error state. The ∆R/R values considered here
can be achieved through different combinations of device
parameters. All of the tests are performed using 2b cells.

Figure 12 shows how RLO ∆R/R (left) and RTN error
probability (right) impact MLP1 accuracy. The misclassi-
fication rate is more sensitive to the ∆R/R rather than
the error probability, suggesting directions for future device
innovations. Furthermore, for cells with less aggressive RTN
parameters, ABN-10 can fully restore the network accuracy
loss caused by RTN errors with multibit cells.

IX. CONCLUSIONS
Memristive accelerators for MVM offer substantial perfor-

mance and energy over conventional systems. Error correc-
tion has not been explored in these systems, and represents a
major bottleneck even in neural networks, a relatively noise
tolerant application. We present data aware AN-codes, the
first error correction system for in-situ MVM that can largely
restore the accuracy loss caused by the noise. Data aware
AN-codes leverage the noise properties and data layout of
in-situ MVM to increase the accuracy with a moderate
overhead. The results point to important future directions
in the design of memristive accelerators to tolerate errors.
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